

ENVIRONMENTAL PRODUCT DECLARATION

IN ACCORDANCE WITH EN 15804+A2 & ISO 14025


Vesiset balcony water control - stainless steel based systems Kouruset Oy

EPD HUB, EPD number HUB-4297

Published on 31.10.2025, last updated on 31.10.2025, valid until 30.10.2030

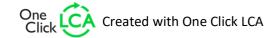
Life Cycle Assessment study has been performed in accordance with the requirements of EN 15804, EPD Hub PCR version 1.2 (24 Mar 2025) and JRC characterization factors EF 3.1.

GENERAL INFORMATION

MANUFACTURER

Manufacturer	Kouruset Oy
Address	Posliinitehtaankatu 6, 04260 Kerava, Fl
Contact details	asiakaspalvelu@kouruset.fi
Website	www.kouruset.fi

EPD STANDARDS, SCOPE AND VERIFICATION

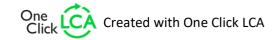

Program operator	EPD Hub, hub@epdhub.com
Reference standard	EN 15804:2012+A2:2019/AC:2021 and ISO 14025
PCR	EPD Hub Core PCR Version 1.2, 24 Mar 2025
Sector	Construction product
Category of EPD	Third party verified EPD
Parent EPD number	-
Scope of the EPD	Cradle to gate with options, A4-A5, and modules C1-C4, D
EPD author	Miika Ylhäinen
EPD verification	Independent verification of this EPD and data, according to ISO 14025: ☐ Internal verification ☑ External verification
EPD verifier	Yazan Badour, as an authorised verifier acting for EPD Hub Limited

This EPD is intended for business-to-business and/or business-to-consumer communication. The manufacturer has the sole ownership, liability, and responsibility for the EPD. EPDs within the same product category but from different programs may not be comparable. EPDs of construction products

may not be comparable if they do not comply with EN 15804 and if they are not compared in a building context.

PRODUCT

Product name	Vesiset balcony water control - stainless steel based systems
Additional labels	-
Product reference	-
Place(s) of raw material origin	China, EU
Place of production	Tuusula, Finland
Place(s) of installation and use	Finland
Period for data	Calendar year 2022
Averaging in EPD	Multiple products
Variation in GWP-fossil for A1-A3 (%)	-0.1 / -3.6 %
GTIN (Global Trade Item Number)	-
NOBB (Norwegian Building Product Database)	-
A1-A3 Specific data (%)	6,96



ENVIRONMENTAL DATA SUMMARY

Declared unit	1 kg
Declared unit mass	1 kg
GWP-fossil, A1-A3 (kgCO ₂ e)	5,95E+00
GWP-total, A1-A3 (kgCO₂e)	5,91E+00
Secondary material, inputs (%)	57,3
Secondary material, outputs (%)	94,2
Total energy use, A1-A3 (kWh)	24,2
Net freshwater use, A1-A3 (m³)	0,06

PRODUCT AND MANUFACTURER

ABOUT THE MANUFACTURER

Kouruset Oy, founded in 1993, is a company specialised in balcony drainage solutions as well as roof safety products and rainwater systems. The company's own production is focused on balcony drainage products, which are manufactured in Kerava, Finland.

Kouruset Oy develops drainage solutions designed for long-term performance in Nordic climate conditions. The products are primarily used in multi-storey residential buildings and are applied in both new construction and renovation projects.

PRODUCT DESCRIPTION

This Environmental Product Declaration covers balcony drainage systems manufactured from stainless steel under the product name Vesiset Parvekevedenpoisto. The EPD includes both interior and exterior drainage system components designed specifically for balconies.

The drainage systems are commonly used in multi-storey residential buildings to remove rainwater, condensate from heat pumps, and occasional cleaning water from balconies in a controlled manner. In external configurations, the pipes are installed along the outer edge of the balcony. In internal systems, the pipe runs between two balcony slabs and connects through each slab, directing water into the building's drainage system.

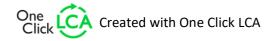
The Vesiset Plus interior drainage system is suitable for both new construction and renovation projects. It is the only frost-resistant solution on the market, operating reliably without the need for heating cables—even in sub-zero conditions.

The product family includes straight stainless steel drainage pipes and a range

of complementary parts such as corner pieces, balcony drains (through-slab elements), mounting brackets, and connectors. Multiple pipe diameters are available to meet different drainage needs and flow capacity requirements. The interior systems are available in diameters of 50, 75, and 100 mm, while the exterior systems are available in 75 and 100 mm.

The main material is stainless steel, with additional components made of copper and aluminium. All materials are included in the LCA inventory.

No CE marking or harmonised European product standard currently applies to the product group.

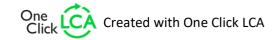

Further information can be found at: www.kouruset.fi

PRODUCT RAW MATERIAL MAIN COMPOSITION

Raw material category	Amount, mass %	Material origin
Metals	100	EU and Asia
Minerals	0	-
Fossil materials	0	-
Bio-based materials	0	-

BIOGENIC CARBON CONTENT

Product's biogenic carbon content at the factory gate


Biogenic carbon content in product, kg C	0
Biogenic carbon content in packaging, kg C	0,020

FUNCTIONAL UNIT AND SERVICE LIFE

Declared unit	1 kg
Mass per declared unit	1 kg
Functional unit	-
Reference service life	-

SUBSTANCES, REACH - VERY HIGH CONCERN

The product does not contain any REACH SVHC substances in amounts greater than 0,1 % (1000 ppm).

PRODUCT LIFE-CYCLE

SYSTEM BOUNDARY

This EPD covers the life-cycle modules listed in the following table.

Pro	duct s	tage		mbly ige			U	se sta	ge			Ei	nd of I	ife sta	ge	5	Beyond the system boundaries			
A1	A2	А3	A4	A5	B1	B2	В3	В4	В5	В6	В7	C1	C2	С3	C4					
×	×	×	×	×	용	동	동	동	동	동	용	×	×	×	×		×			
Raw materials	Transport	Manufacturing	Transport	Assembly	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	Deconstruction/ demolition	Transport	Waste processing	Disposal	Reuse	Recovery	Recycling		

Modules not declared = ND. Modules not relevant = MNR

MANUFACTURING AND PACKAGING (A1-A3)

The environmental impacts considered for the product stage cover the manufacturing of raw materials used in the production as well as packaging materials and other ancillary materials. Also, fuels used by machines, and handling of waste formed in the production processes at the manufacturing facilities are included in this stage. The study also considers the material losses occurring during the manufacturing processes as well as losses during electricity transmission.

A market-based approach is used in modelling the electricity mix utilized in the factory.

The products were manufactured in 2022 in Tuusula, Finland. Since 2025, production has taken place in a new facility located in Kerava, Finland. The manufacturing process uses electricity from the national grid, without renewable energy certificates.

Packaging materials include corrugated cardboard boxes, wood-containing paper sheets between product components, and low-density polyethylene (LDPE) protective sleeves covering the stainless steel pipes. These packaging materials account for a minor share of the product weight and include both biogenic and fossil-based content. No water is used, and no wastewater is generated during the production process.

Production scrap is minimized through efficient processing. Metal offcuts are reused in smaller components when possible, and any remaining stainless steel waste is sent to recycling. No significant material losses occur during the manufacturing stage.

TRANSPORT AND INSTALLATION (A4-A5)

Transportation impacts occurred from final products delivery to construction site (A4) cover fuel direct exhaust emissions, environmental impacts of fuel production, as well as related infrastructure emissions.

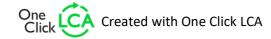
The product is transported to the construction site by truck, with an average delivery distance of 50 km within the Helsinki metropolitan area, using standard diesel-powered road freight.

Installation is carried out on-site in accordance with customer specifications. The process typically involves securing the balcony drainage pipe system to structural components using fasteners or brackets. Electric power tools are used in small quantities during installation, consuming minor amounts of electricity sourced from the national grid.

Minor amounts of waste are generated during installation, consisting primarily of protective packaging such as LDPE plastic sleeves and cardboard, as well as offcuts of stainless steel or other materials resulting from on-site adjustments. Packaging waste is typically collected and sorted for recycling where feasible, in accordance with local construction site practices.

construction sector scenarios for stainless steel published by World Stainless (2024) and ICDA (2023). The remaining materials include small amounts of primary copper (1.7%) and aluminium (1.4%), which are also assumed to be recycled, based on sector-average data from EN 50693 and Eurostat (2020), respectively. These values are based on the declared unit (1 kg of product). End-of-life modelling relies on representative scenarios for construction products in Europe and includes minor landfill disposal (assumed at 5%) to cover material residues or losses in the sorting process. The recycling of metal components results in environmental benefits beyond the system boundary (Module D), reflecting the avoided impacts of producing virgin stainless steel, aluminium, and copper.

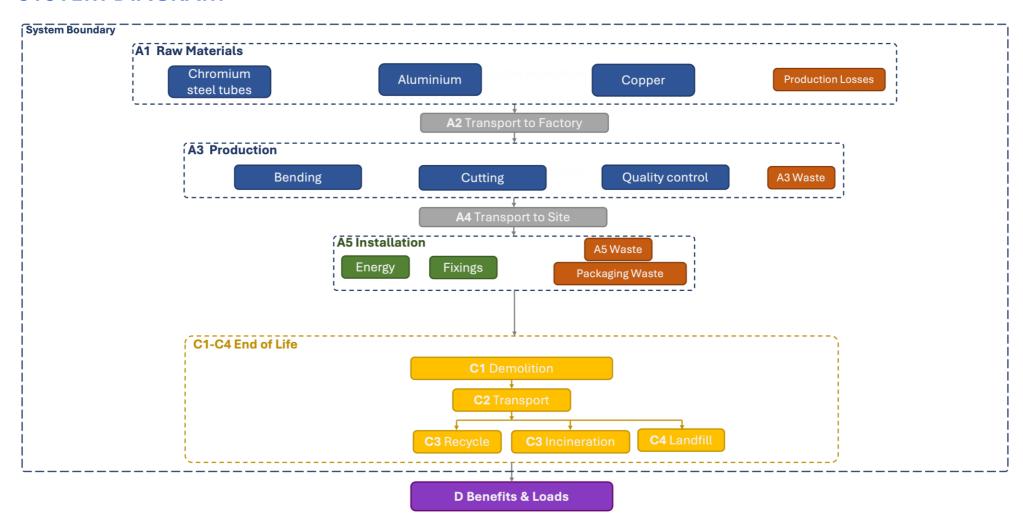
PRODUCT USE AND MAINTENANCE (B1-B7)


This EPD does not cover the use phase.

Air, soil, and water impacts during the use phase have not been studied.

PRODUCT END OF LIFE (C1-C4, D)

At the end of the product's service life, standard deconstruction practices are assumed, as no building-specific demolition data is available. Dismantling is expected to be carried out manually or with light machinery, resulting in low diesel consumption.


Following deconstruction, the product is transported approximately 50 km to waste treatment facilities. The main material—stainless steel (96.9% of product mass)—is separated and directed to material recycling, in line with

SYSTEM DIAGRAM

LIFE-CYCLE ASSESSMENT

CUT-OFF CRITERIA

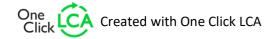
The study does not exclude any modules or processes which are stated mandatory in the reference standard and the applied PCR. The study does not exclude any hazardous materials or substances. The study includes all major raw material and energy consumption. All inputs and outputs of the unit processes, for which data is available for, are included in the calculation. There is no neglected unit process more than 1% of total mass or energy flows. The module specific total neglected input and output flows also do not exceed 5% of energy usage or mass.

The production of capital equipment, construction activities, and infrastructure, maintenance and operation of capital equipment, personnel-related activities, energy and water use related to company management and sales activities are excluded.

VALIDATION OF DATA

Data collection for production, transport, and packaging was conducted using time and site-specific information, as defined in the general information section on page 1 and 2. Upstream process calculations rely on generic data as defined in the Bibliography section. Manufacturer-provided specific and generic data were used for the product's manufacturing stage. The analysis was performed in One Click LCA EPD Generator, with the 'Cut-Off, EN 15804+A2' allocation method, and characterization factors according to EN 15804:2012+A2:2019/AC:2021 and JRC EF 3.1.

ALLOCATION, ESTIMATES AND ASSUMPTIONS

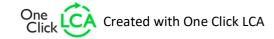

Allocation is required if some material, energy, and waste data cannot be measured separately for the product under investigation. All allocations are done as per the reference standards and the applied PCR. In this study, allocation has been done in the following ways:

Data type	Allocation
Raw materials	No allocation
Packaging material	No allocation
Ancillary materials	No allocation
Manufacturing energy and waste	Allocated by mass or volume

PRODUCT & MANUFACTURING SITES GROUPING

Type of grouping	Multiple products
Grouping method	Based on a representative product
Variation in GWP-fossil for A1-A3, %	-0.1 / -3.6 %

This EPD represents a group of stainless steel-based balcony drainage pipe systems manufactured by a single production site in Finland. The grouping includes both internal and external systems with nominal pipe diameters ranging from 50 mm to 100 mm. The representative product used for modelling is a 75 mm internal pipe system configuration, which reflects the most common product type by sales volume in 2022.

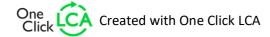


The grouping was verified using a sampling approach recommended by One Click LCA, comparing the representative product to one smaller (50 mm internal) and one larger (100 mm external) configuration. Despite size differences, the environmental impacts per kilogram of these variants fall within the expected range, and the average results remain representative of the entire product group.

This EPD covers all standard product sizes and configurations within the internal and external stainless steel pipe system range. The declared values can therefore be used in the environmental assessment and building LCA of any balcony drainage solution delivered by the manufacturer, provided it falls within the stated dimensional and material parameters.

LCA SOFTWARE AND BIBLIOGRAPHY

This EPD has been created using One Click LCA EPD Generator. The LCA and EPD have been prepared according to the reference standards and ISO 14040/14044. The EPD Generator uses Ecoinvent v3.10.1 and One Click LCA databases as sources of environmental data. Allocation used in Ecoinvent 3.10.1 environmental data sources follow the methodology 'allocation, Cutoff, EN 15804+A2'.


ENVIRONMENTAL IMPACT DATA

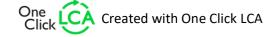
The estimated impact results are only relative statements which do not indicate the end points of the impact categories, exceeding threshold values, safety margins or risks.

CORE ENVIRONMENTAL IMPACT INDICATORS – EN 15804+A2, EF 3.1

Impact category	Unit	A1	A2	A3	A1-A3	A4	A5	B1	B2	В3	B4	B5	В6	В7	C1	C2	С3	C4	D
GWP – total ¹⁾	kg CO₂e	5,57E+00	2,26E-01	1,15E-01	5,91E+00	5,64E-03	2,63E-01	ND	0,00E+00	4,63E-02	2,14E-02	3,78E-04	-4,84E+00						
GWP – fossil	kg CO₂e	5,55E+00	2,26E-01	1,80E-01	5,95E+00	5,63E-03	1,93E-01	ND	0,00E+00	4,63E-02	2,14E-02	3,78E-04	-4,83E+00						
GWP – biogenic	kg CO₂e	1,18E-02	3,55E-05	-6,88E-02	-5,69E-02	1,28E-06	6,91E-02	ND	0,00E+00	1,01E-05	-4,59E-05	-2,11E-07	-9,47E-03						
GWP – LULUC	kg CO₂e	6,15E-03	1,21E-04	4,01E-03	1,03E-02	2,52E-06	3,20E-04	ND	0,00E+00	2,05E-05	2,64E-05	2,45E-07	-7,17E-03						
Ozone depletion pot.	kg CFC-11e	4,62E-08	3,28E-09	4,05E-09	5,35E-08	8,32E-11	1,67E-09	ND	0,00E+00	6,47E-10	2,86E-10	1,06E-11	-3,31E-08						
Acidification potential	mol H⁺e	3,01E-02	6,46E-03	7,13E-04	3,73E-02	1,92E-05	1,14E-03	ND	0,00E+00	1,54E-04	2,54E-04	2,63E-06	-2,96E-02						
EP-freshwater ²⁾	kg Pe	1,37E-01	7,34E-06	6,15E-05	1,37E-01	4,39E-07	4,12E-03	ND	0,00E+00	3,60E-06	1,37E-05	3,37E-08	-3,43E-03						
EP-marine	kg Ne	5,47E-03	1,61E-03	2,20E-04	7,30E-03	6,31E-06	2,36E-04	ND	0,00E+00	5,00E-05	5,62E-05	1,01E-06	-5,56E-03						
EP-terrestrial	mol Ne	5,80E-02	1,79E-02	1,88E-03	7,77E-02	6,87E-05	2,41E-03	ND	0,00E+00	5,44E-04	6,35E-04	1,09E-05	-6,26E-02						
POCP ("smog") ³)	kg NMVOCe	1,87E-02	4,86E-03	6,15E-04	2,41E-02	2,83E-05	7,50E-04	ND	0,00E+00	2,15E-04	1,88E-04	3,86E-06	-1,86E-02						
ADP-minerals & metals ⁴)	kg Sbe	1,49E-04	2,35E-07	9,47E-07	1,51E-04	1,57E-08	4,59E-06	ND	0,00E+00	1,52E-07	1,51E-06	6,39E-10	-1,58E-04						
ADP-fossil resources	MJ	6,20E+01	2,78E+00	6,14E+00	7,10E+01	8,18E-02	2,20E+00	ND	0,00E+00	6,49E-01	2,86E-01	9,00E-03	-5,22E+01						
Water use ⁵⁾	m³e depr.	2,53E+04	7,95E-03	1,74E-01	2,53E+04	4,04E-04	7,60E+02	ND	0,00E+00	3,01E-03	5,13E-03	3,88E-05	-1,46E+00						

1) GWP = Global Warming Potential; 2) EP = Eutrophication potential. Required characterisation method and data are in kg P-eq. Multiply by 3,07 to get PO4e; 3) POCP = Photochemical ozone formation; 4) ADP = Abiotic depletion potential; 5) EN 15804+A2 disclaimer for Abiotic depletion and Water use and optional indicators except Particulate matter and Ionizing radiation, human health. The results of these environmental impact indicators shall be used with care as the uncertainties on these results are high or as there is limited experience with the indicator.

ADDITIONAL (OPTIONAL) ENVIRONMENTAL IMPACT INDICATORS – EN 15804+A2, EF 3.1


Impact category	Unit	A1	A2	A3	A1-A3	A4	A5	B1	B2	В3	B4	B5	В6	В7	C1	C2	С3	C4	D
Particulate matter	Incidence	4,40E-07	7,04E-09	6,46E-09	4,53E-07	5,64E-10	1,40E-08	ND	0,00E+00	3,68E-09	3,45E-09	5,90E-11	-4,04E-07						
Ionizing radiation ⁶⁾	kBq	3,40E-01	1,32E-03	2,79E-01	6,21E-01	7,12E-05	2,01E-02	ND	0,00E+00	5,26E-04	2,39E-03	6,58E-06	-2,10E-01						
Ecotoxicity (freshwater)	CTUe	1,59E+01	2,10E-01	8,99E-01	1,70E+01	1,16E-02	5,81E-01	ND	0,00E+00	1,03E-01	1,67E-01	2,47E-01	-3,74E+01						
Human toxicity, cancer	CTUh	7,73E-09	4,76E-11	5,10E-11	7,83E-09	9,30E-13	2,38E-10	ND	0,00E+00	7,87E-12	1,90E-11	8,95E-14	-4,37E-09						
Human tox. non-cancer	CTUh	1,12E-07	7,13E-10	1,69E-09	1,14E-07	5,29E-11	3,58E-09	ND	0,00E+00	4,07E-10	1,29E-09	7,10E-12	-9,62E-08						
SQP ⁷⁾	-	2,72E+01	2,72E-01	3,59E+00	3,11E+01	8,23E-02	9,88E-01	ND	0,00E+00	3,90E-01	5,56E-01	1,75E-02	-2,60E+01						

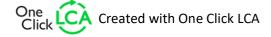
⁶⁾ EN 15804+A2 disclaimer for lonizing radiation, human health. This impact category deals mainly with the eventual impact of low-dose ionizing radiation on human health of the nuclear fuel cycle. It does not consider effects due to possible nuclear accidents, occupational exposure nor due to radioactive waste disposal in underground facilities. Potential ionizing radiation from the soil, from radon and from some construction materials is also not measured by this indicator; 7) SQP = Land use related impacts/soil quality.

USE OF NATURAL RESOURCES

Impact category	Unit	A1	A2	А3	A1-A3	A4	A5	B1	B2	В3	B4	B5	В6	В7	C1	C2	С3	C4	D
Renew. PER as energy ⁸⁾	МЈ	1,45E+01	2,21E-02	1,50E+00	1,60E+01	1,12E-03	-2,47E-01	ND	0,00E+00	8,90E-03	5,31E-02	9,98E-05	-1,34E+01						
Renew. PER as material	МЈ	0,00E+00	0,00E+00	6,00E-01	6,00E-01	0,00E+00	-6,00E-01	ND	0,00E+00	0,00E+00	0,00E+00	0,00E+00	2,76E-02						
Total use of renew. PER	MJ	1,45E+01	2,21E-02	2,10E+00	1,66E+01	1,12E-03	-8,47E-01	ND	0,00E+00	8,90E-03	5,31E-02	9,98E-05	-1,34E+01						
Non-re. PER as energy	MJ	6,25E+01	2,78E+00	5,79E+00	7,10E+01	8,18E-02	1,86E+00	ND	0,00E+00	6,49E-01	2,86E-01	9,00E-03	-5,22E+01						
Non-re. PER as material	MJ	0,00E+00	0,00E+00	3,63E-01	3,63E-01	0,00E+00	-3,63E-01	ND	0,00E+00	0,00E+00	0,00E+00	0,00E+00	1,41E-01						
Total use of non-re. PER	MJ	6,25E+01	2,78E+00	6,15E+00	7,14E+01	8,18E-02	1,50E+00	ND	0,00E+00	6,49E-01	2,86E-01	9,00E-03	-5,20E+01						
Secondary materials	kg	5,73E-01	1,32E-03	4,51E-02	6,19E-01	3,48E-05	1,86E-02	ND	0,00E+00	2,92E-04	3,49E-04	2,35E-06	5,73E-01						
Renew. secondary fuels	МЈ	1,69E-03	3,32E-06	4,46E-03	6,15E-03	4,42E-07	1,85E-04	ND	0,00E+00	3,71E-06	1,62E-05	4,70E-08	-1,33E-03						
Non-ren. secondary fuels	MJ	4,10E-04	0,00E+00	0,00E+00	4,10E-04	0,00E+00	1,23E-05	ND	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00						
Use of net fresh water	m³	5,16E-02	1,95E-04	5,18E-03	5,70E-02	1,21E-05	1,72E-03	ND	0,00E+00	8,61E-05	1,51E-04	3,39E-06	-4,41E-02						

⁸⁾ PER = Primary energy resources.

END OF LIFE – WASTE


Impact category	Unit	A1	A2	А3	A1-A3	A4	A5	B1	B2	В3	B4	B5	В6	В7	C1	C2	С3	C4	D
Hazardous waste	kg	5,08E+00	3,69E-03	1,09E-02	5,09E+00	1,39E-04	1,53E-01	ND	0,00E+00	1,13E-03	1,88E-03	1,38E-05	-4,59E+00						
Non-hazardous waste	kg	1,22E+01	5,08E-02	4,09E-01	1,26E+01	2,56E-03	4,26E-01	ND	0,00E+00	2,12E-02	6,74E-02	7,87E-03	-9,54E+00						
Radioactive waste	kg	1,07E-04	3,22E-07	6,02E-05	1,67E-04	1,74E-08	5,34E-06	ND	0,00E+00	1,29E-07	6,12E-07	1,61E-09	-5,14E-05						

END OF LIFE – OUTPUT FLOWS

Impact category	Unit	A1	A2	A3	A1-A3	A4	A5	B1	B2	В3	B4	B5	В6	B7	C1	C2	С3	C4	D
Components for re-use	kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	ND	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00						
Materials for recycling	kg	1,97E-05	0,00E+00	0,00E+00	1,97E-05	0,00E+00	7,00E-02	ND	0,00E+00	0,00E+00	9,42E-01	0,00E+00	0,00E+00						
Materials for energy rec	kg	2,64E-05	0,00E+00	0,00E+00	2,64E-05	0,00E+00	7,93E-07	ND	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00						
Exported energy	MJ	1,08E-04	0,00E+00	0,00E+00	1,08E-04	0,00E+00	6,80E-02	ND	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00						
Exported energy – Electricity	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	2,85E-02	ND	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00						
Exported energy – Heat	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	3,95E-02	ND	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00						

ENVIRONMENTAL IMPACTS – EN 15804+A1, CML / ISO 21930

Impact category	Unit	A1	A2	A3	A1-A3	A4	A5	B1	B2	В3	B4	B5	B6	B7	C1	C2	С3	C4	D
Global Warming Pot.	kg CO₂e	5,45E+00	2,25E-01	1,84E-01	5,86E+00	5,60E-03	1,95E-01	ND	0,00E+00	4,60E-02	2,13E-02	3,74E-04	-4,81E+00						
Ozone depletion Pot.	kg CFC-11e	3,29E-08	2,60E-09	3,44E-09	3,90E-08	6,64E-11	1,22E-09	ND	0,00E+00	5,17E-10	2,35E-10	8,39E-12	-2,80E-08						
Acidification	kg SO₂e	2,48E-02	5,16E-03	5,55E-04	3,05E-02	1,47E-05	9,33E-04	ND	0,00E+00	1,18E-04	2,04E-04	1,95E-06	-2,42E-02						
Eutrophication	kg PO ₄ ³e	3,41E-03	5,69E-04	4,97E-04	4,48E-03	3,57E-06	1,45E-04	ND	0,00E+00	2,87E-05	2,96E-05	6,74E-07	-3,68E-03						
POCP ("smog")	kg C₂H₄e	1,52E-03	2,56E-04	5,14E-05	1,82E-03	1,31E-06	5,73E-05	ND	0,00E+00	1,06E-05	1,21E-05	1,81E-07	-1,47E-03						
ADP-elements	kg Sbe	1,49E-04	2,32E-07	9,50E-07	1,50E-04	1,53E-08	4,57E-06	ND	0,00E+00	1,48E-07	1,50E-06	6,25E-10	-1,57E-04						
ADP-fossil	MJ	5,56E+01	2,76E+00	2,18E+00	6,05E+01	8,06E-02	1,87E+00	ND	0,00E+00	6,41E-01	2,45E-01	8,89E-03	-4,90E+01						



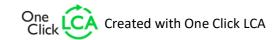
ADDITIONAL INDICATOR – GWP-GHG

Impact category	Unit	A1	A2	А3	A1-A3	A4	A5	B1	B2	В3	B4	B5	В6	В7	C1	C2	С3	C4	D
GWP-GHG ⁹⁾	kg CO₂e	5,55E+00	2,26E-01	1,84E-01	5,96E+00	5,64E-03	1,94E-01	ND	0,00E+00	4,63E-02	2,14E-02	3,78E-04	-4,83E+00						

⁹⁾ This indicator includes all greenhouse gases excluding biogenic carbon dioxide uptake and emissions and biogenic carbon stored in the product. In addition, the characterisation factors for the flows – CH4 fossil, CH4 biogenic and Dinitrogen monoxide – were updated. This indicator is identical to the GWP-total of EN 15804:2012+A2:2019 except that the characterisation factor for biogenic CO2 is set to zero.

SCENARIO DOCUMENTATION

Manufacturing energy scenario documentation

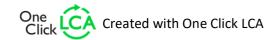

·	
Scenario parameter	Value
Electricity data source and quality	Electricity, medium voltage, residual mix; Finland; Ecoinvent 3.8
Electricity kg CO2e / kWh	0,156
District heating data source and quality	Not applicable
District heating CO2e / kWh	0

Transport scenario documentation A4

Scenario parameter	Value
Fuel and vehicle type. Eg, electric truck, diesel powered truck	Diesel-powered lorry (EURO6, 16–32 t)
Average transport distance, km	50 km
Capacity utilization (including empty return) %	50
Bulk density of transported products	120
Volume capacity utilization factor	1

Installation scenario documentation A5

Scenario information	Value
Ancillary materials for installation (specified by	0
material) / kg or other units as appropriate	
Water use / m³	0
Other resource use / kg	0
Quantitative description of energy type	0,0033
(regional mix) and consumption during the	
installation process / kWh or MJ	
Waste materials on the building site before	0,05
waste processing, generated by the product's	
installation (specified by type) / kg	
Output materials (specified by type) as result	0,05
of waste processing at the building site e.g.	
collection for recycling, for energy recovery,	
disposal (specified by route) / kg	
Direct emissions to ambient air, soil and water	0
/ kg	



End of life scenario documentation

Scenario information	Value
Collection process – kg collected separately	1,000
Collection process – kg collected with mixed waste	0,000
Recovery process – kg for re-use	0,000
Recovery process – kg for recycling	1,000
Recovery process – kg for energy recovery	0,000
Disposal (total) – kg for final deposition	0,002
Scenario assumptions e.g. transportation	Transportation to waste treatment is assumed to be 50 km by 16–32 t dieselpowered truck (EURO6).

THIRD-PARTY VERIFICATION STATEMENT

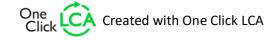
EPD Hub declares that this EPD is verified in accordance with ISO 14025 by an independent, third-party verifier. The project report on the Life Cycle Assessment and the report(s) on features of environmental relevance are filed at EPD Hub. EPD Hub PCR and ECO Platform verification checklist are used.

EPD Hub is not able to identify any unjustified deviations from the PCR and EN 15802+A2 in the Environmental Product Declaration and its project report.

EPD Hub maintains its independence as a third-party body; it was not involved in the execution of the LCA or in the development of the declaration and has no conflicts of interest regarding this verification.

The company-specific data and upstream and downstream data have been examined as regards plausibility and consistency. The publisher is responsible for ensuring the factual integrity and legal compliance of this declaration.

The software used in creation of this LCA and EPD is verified by EPD Hub to conform to the procedural and methodological requirements outlined in ISO 14025:2010, ISO 14040/14044, EN 15804+A2, and EPD Hub Core Product Category Rules and General Program Instructions.


Verified tools

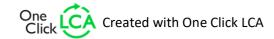
Tool verifier: Magaly Gonzalez Vazquez

Tool verification validity: 27 March 2025 - 26 March 2028

Yazan Badour, as an authorised verifier acting for EPD Hub Limited 31.10.2025

Vesiset Plus (interior application)

Typical weights of balcony drainage products per floor in a standard apartment building, weight per balcony.


	Vesiset Plus 50 mm stainless steel	Vesiset Plus 75 mm stainless steel	Vesiset Plus 100 mm stainless steel
Ground floor (street level)	5,5 kg	8,4 kg	13,5 kg
Middle floors	5,2 kg	7,8 kg	10,5 kg
Top floor*	8,1 kg	12,2 kg	17,9 kg

Vesiset UP (exterior application)

Typical weights of balcony drainage products per floor in a standard apartment building, weight per balcony.

	Vesiset UP 75 mm stainless steel	Vesiset UP 100 mm stainless steel
Ground floor (street level)	7,0 kg	10,2 kg
Middle floors	8,5 kg	11,6 kg
Top floor*	11,4 kg	15,2 kg

^{*} Reported weights for the top floor also include the roof drainage components of the balcony line, such as the C-type roof drain. The exact configuration may vary depending on the project.

